3.6.26 \(\int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx\) [526]

3.6.26.1 Optimal result
3.6.26.2 Mathematica [C] (verified)
3.6.26.3 Rubi [A] (verified)
3.6.26.4 Maple [A] (verified)
3.6.26.5 Fricas [A] (verification not implemented)
3.6.26.6 Sympy [F]
3.6.26.7 Maxima [F]
3.6.26.8 Giac [A] (verification not implemented)
3.6.26.9 Mupad [F(-1)]

3.6.26.1 Optimal result

Integrand size = 27, antiderivative size = 61 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=-\frac {2 \sqrt {3} \text {arctanh}\left (\frac {\sqrt {3} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {3+3 \sin (e+f x)}}\right )}{\sqrt {d} \sqrt {c+d} f} \]

output
-2*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))* 
a^(1/2)/f/d^(1/2)/(c+d)^(1/2)
 
3.6.26.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 3.92 (sec) , antiderivative size = 660, normalized size of antiderivative = 10.82 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \sqrt {3} \left (\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1+i) d \sqrt {e^{-i e}} f x-(2-2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )-i \sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}+\frac {(1-i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2+2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-\sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3-2 i \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ]-i \text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1-i) d \sqrt {e^{-i e}} f x+(2+2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )+\sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 i \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}-\frac {(1+i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2-2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-i \sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3+2 \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ]\right ) \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \sqrt {1+\sin (e+f x)}}{\sqrt {d} \sqrt {c+d} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )} \]

input
Integrate[Sqrt[3 + 3*Sin[e + f*x]]/(c + d*Sin[e + f*x]),x]
 
output
((1/8 + I/8)*Sqrt[3]*(RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1 
^4 & , ((1 + I)*d*Sqrt[E^((-I)*e)]*f*x - (2 - 2*I)*d*Sqrt[E^((-I)*e)]*Log[ 
E^((I/2)*f*x) - #1] - I*Sqrt[d]*Sqrt[c + d]*f*x*#1 + 2*Sqrt[d]*Sqrt[c + d] 
*Log[E^((I/2)*f*x) - #1]*#1 + ((1 - I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 
+ 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - Sqrt[d]*Sqrt[c + 
 d]*E^(I*e)*f*x*#1^3 - (2*I)*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[E^((I/2)*f*x) 
 - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ] - I*RootSum[-d + (2*I)*c*E^(I*e)*# 
1^2 + d*E^((2*I)*e)*#1^4 & , ((1 - I)*d*Sqrt[E^((-I)*e)]*f*x + (2 + 2*I)*d 
*Sqrt[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] + Sqrt[d]*Sqrt[c + d]*f*x*#1 + ( 
2*I)*Sqrt[d]*Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 - ((1 + I)*c*f*x*#1^2) 
/Sqrt[E^((-I)*e)] + ((2 - 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I 
)*e)] - I*Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 + 2*Sqrt[d]*Sqrt[c + d]*E^( 
I*e)*Log[E^((I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ])*(Cos[e/2] + 
 I*Sin[e/2])*Sqrt[1 + Sin[e + f*x]])/(Sqrt[d]*Sqrt[c + d]*f*(Cos[(e + f*x) 
/2] + Sin[(e + f*x)/2]))
 
3.6.26.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3042, 3252, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a}}{c+d \sin (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin (e+f x)+a}}{c+d \sin (e+f x)}dx\)

\(\Big \downarrow \) 3252

\(\displaystyle -\frac {2 a \int \frac {1}{a (c+d)-\frac {a^2 d \cos ^2(e+f x)}{\sin (e+f x) a+a}}d\frac {a \cos (e+f x)}{\sqrt {\sin (e+f x) a+a}}}{f}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {d} f \sqrt {c+d}}\)

input
Int[Sqrt[a + a*Sin[e + f*x]]/(c + d*Sin[e + f*x]),x]
 
output
(-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a 
*Sin[e + f*x]])])/(Sqrt[d]*Sqrt[c + d]*f)
 

3.6.26.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.6.26.4 Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.31

method result size
default \(-\frac {2 a \left (\sin \left (f x +e \right )+1\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right )}{\sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(80\)

input
int((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)
 
output
-2*a*(sin(f*x+e)+1)*(-a*(sin(f*x+e)-1))^(1/2)/(a*(c+d)*d)^(1/2)*arctanh((- 
a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))/cos(f*x+e)/(a+a*sin(f*x+e))^( 
1/2)/f
 
3.6.26.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 464, normalized size of antiderivative = 7.61 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\left [\frac {\sqrt {\frac {a}{c d + d^{2}}} \log \left (\frac {a d^{2} \cos \left (f x + e\right )^{3} - a c^{2} - 2 \, a c d - a d^{2} - {\left (6 \, a c d + 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} - {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )^{2} + {\left (c^{2} d + 3 \, c d^{2} + 2 \, d^{3}\right )} \cos \left (f x + e\right ) - {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} + {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {a}{c d + d^{2}}} - {\left (a c^{2} + 8 \, a c d + 9 \, a d^{2}\right )} \cos \left (f x + e\right ) + {\left (a d^{2} \cos \left (f x + e\right )^{2} - a c^{2} - 2 \, a c d - a d^{2} + 2 \, {\left (3 \, a c d + 4 \, a d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right )}{2 \, f}, -\frac {\sqrt {-\frac {a}{c d + d^{2}}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {a}{c d + d^{2}}}}{2 \, a \cos \left (f x + e\right )}\right )}{f}\right ] \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")
 
output
[1/2*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2*a*c*d - a*d 
^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 + 4*(c^2*d + 4*c*d^2 + 3*d^3 - (c* 
d^2 + d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)*cos(f*x + e) - (c^2* 
d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin 
(f*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2)*cos(f*x + 
 e) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d 
^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f* 
x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e 
)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e)))/f, -sqrt(-a/( 
c*d + d^2))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d) 
*sqrt(-a/(c*d + d^2))/(a*cos(f*x + e)))/f]
 
3.6.26.6 Sympy [F]

\[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}{c + d \sin {\left (e + f x \right )}}\, dx \]

input
integrate((a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e)),x)
 
output
Integral(sqrt(a*(sin(e + f*x) + 1))/(c + d*sin(e + f*x)), x)
 
3.6.26.7 Maxima [F]

\[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a}}{d \sin \left (f x + e\right ) + c} \,d x } \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")
 
output
integrate(sqrt(a*sin(f*x + e) + a)/(d*sin(f*x + e) + c), x)
 
3.6.26.8 Giac [A] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=-\frac {2 \, \sqrt {a} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sqrt {-c d - d^{2}} f} \]

input
integrate((a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="giac")
 
output
-2*sqrt(a)*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d - d^2 
))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/(sqrt(-c*d - d^2)*f)
 
3.6.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {3+3 \sin (e+f x)}}{c+d \sin (e+f x)} \, dx=\int \frac {\sqrt {a+a\,\sin \left (e+f\,x\right )}}{c+d\,\sin \left (e+f\,x\right )} \,d x \]

input
int((a + a*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x)),x)
 
output
int((a + a*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x)), x)